Purpose
To compute the matrices of the positive feedback controller
| Ak | Bk |
K = |----|----|
| Ck | Dk |
for the shaped plant
| A | B |
G = |---|---|
| C | D |
in the Discrete-Time Loop Shaping Design Procedure.
Specification
SUBROUTINE SB10ZD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD,
$ FACTOR, AK, LDAK, BK, LDBK, CK, LDCK, DK,
$ LDDK, RCOND, TOL, IWORK, DWORK, LDWORK, BWORK,
$ INFO )
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD,
$ LDDK, LDWORK, M, N, NP
DOUBLE PRECISION FACTOR, TOL
C .. Array Arguments ..
INTEGER IWORK( * )
LOGICAL BWORK( * )
DOUBLE PRECISION A ( LDA, * ), AK( LDAK, * ), B ( LDB, * ),
$ BK( LDBK, * ), C ( LDC, * ), CK( LDCK, * ),
$ D ( LDD, * ), DK( LDDK, * ), DWORK( * ),
$ RCOND( 6 )
Arguments
Input/Output Parameters
N (input) INTEGER
The order of the plant. N >= 0.
M (input) INTEGER
The column size of the matrix B. M >= 0.
NP (input) INTEGER
The row size of the matrix C. NP >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The leading N-by-N part of this array must contain the
system state matrix A of the shaped plant.
LDA INTEGER
The leading dimension of the array A. LDA >= max(1,N).
B (input) DOUBLE PRECISION array, dimension (LDB,M)
The leading N-by-M part of this array must contain the
system input matrix B of the shaped plant.
LDB INTEGER
The leading dimension of the array B. LDB >= max(1,N).
C (input) DOUBLE PRECISION array, dimension (LDC,N)
The leading NP-by-N part of this array must contain the
system output matrix C of the shaped plant.
LDC INTEGER
The leading dimension of the array C. LDC >= max(1,NP).
D (input) DOUBLE PRECISION array, dimension (LDD,M)
The leading NP-by-M part of this array must contain the
system input/output matrix D of the shaped plant.
LDD INTEGER
The leading dimension of the array D. LDD >= max(1,NP).
FACTOR (input) DOUBLE PRECISION
= 1 implies that an optimal controller is required
(not recommended);
> 1 implies that a suboptimal controller is required
achieving a performance FACTOR less than optimal.
FACTOR >= 1.
AK (output) DOUBLE PRECISION array, dimension (LDAK,N)
The leading N-by-N part of this array contains the
controller state matrix Ak.
LDAK INTEGER
The leading dimension of the array AK. LDAK >= max(1,N).
BK (output) DOUBLE PRECISION array, dimension (LDBK,NP)
The leading N-by-NP part of this array contains the
controller input matrix Bk.
LDBK INTEGER
The leading dimension of the array BK. LDBK >= max(1,N).
CK (output) DOUBLE PRECISION array, dimension (LDCK,N)
The leading M-by-N part of this array contains the
controller output matrix Ck.
LDCK INTEGER
The leading dimension of the array CK. LDCK >= max(1,M).
DK (output) DOUBLE PRECISION array, dimension (LDDK,NP)
The leading M-by-NP part of this array contains the
controller matrix Dk.
LDDK INTEGER
The leading dimension of the array DK. LDDK >= max(1,M).
RCOND (output) DOUBLE PRECISION array, dimension (6)
RCOND(1) contains an estimate of the reciprocal condition
number of the linear system of equations from
which the solution of the P-Riccati equation is
obtained;
RCOND(2) contains an estimate of the reciprocal condition
number of the linear system of equations from
which the solution of the Q-Riccati equation is
obtained;
RCOND(3) contains an estimate of the reciprocal condition
number of the matrix (gamma^2-1)*In - P*Q;
RCOND(4) contains an estimate of the reciprocal condition
number of the matrix Rx + Bx'*X*Bx;
RCOND(5) contains an estimate of the reciprocal condition
^
number of the matrix Ip + D*Dk;
RCOND(6) contains an estimate of the reciprocal condition
^
number of the matrix Im + Dk*D.
Tolerances
TOL DOUBLE PRECISION
Tolerance used for checking the nonsingularity of the
matrices to be inverted. If TOL <= 0, then a default value
equal to sqrt(EPS) is used, where EPS is the relative
machine precision. TOL < 1.
Workspace
IWORK INTEGER array, dimension 2*max(N,M+NP)
DWORK DOUBLE PRECISION array, dimension (LDWORK)
On exit, if INFO = 0, DWORK(1) contains the optimal value
of LDWORK.
LDWORK INTEGER
The dimension of the array DWORK.
LDWORK >= 16*N*N + 5*M*M + 7*NP*NP + 6*M*N + 7*M*NP +
7*N*NP + 6*N + 2*(M + NP) +
max(14*N+23,16*N,2*M-1,2*NP-1).
For good performance, LDWORK must generally be larger.
BWORK LOGICAL array, dimension (2*N)
Error Indicator
INFO (output) INTEGER
= 0: successful exit;
< 0: if INFO = -i, the i-th argument had an illegal
value;
= 1: the P-Riccati equation is not solved successfully;
= 2: the Q-Riccati equation is not solved successfully;
= 3: the iteration to compute eigenvalues or singular
values failed to converge;
= 4: the matrix (gamma^2-1)*In - P*Q is singular;
= 5: the matrix Rx + Bx'*X*Bx is singular;
^
= 6: the matrix Ip + D*Dk is singular;
^
= 7: the matrix Im + Dk*D is singular;
= 8: the matrix Ip - D*Dk is singular;
= 9: the matrix Im - Dk*D is singular;
= 10: the closed-loop system is unstable.
Method
The routine implements the formulas given in [1].References
[1] Gu, D.-W., Petkov, P.H., and Konstantinov, M.M.
On discrete H-infinity loop shaping design procedure routines.
Technical Report 00-6, Dept. of Engineering, Univ. of
Leicester, UK, 2000.
Numerical Aspects
The accuracy of the results depends on the conditioning of the two Riccati equations solved in the controller design. For better conditioning it is advised to take FACTOR > 1.Further Comments
NoneExample
Program Text
* SB10ZD EXAMPLE PROGRAM TEXT
* Copyright (c) 2002-2010 NICONET e.V.
*
* .. Parameters ..
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER MMAX, NMAX, PMAX
PARAMETER ( MMAX = 10, NMAX = 10, PMAX = 10 )
INTEGER LDA, LDAK, LDB, LDBK, LDC, LDCK, LDD, LDDK
PARAMETER ( LDA = NMAX, LDAK = NMAX, LDB = NMAX,
$ LDBK = NMAX, LDC = PMAX, LDCK = MMAX,
$ LDD = PMAX, LDDK = MMAX )
INTEGER LIWORK
PARAMETER ( LIWORK = 2*MAX( NMAX, MMAX + PMAX ) )
INTEGER LDWORK
PARAMETER ( LDWORK = 16*NMAX*NMAX + 5*MMAX*MMAX +
$ 7*PMAX*PMAX + 6*MMAX*NMAX +
$ 7*MMAX*PMAX + 7*NMAX*PMAX + 6*NMAX +
$ 2*( MMAX + PMAX ) +
$ MAX( 14*NMAX + 23, 16*NMAX,
$ 2*MMAX - 1, 2*PMAX - 1 ) )
* .. Local Scalars ..
DOUBLE PRECISION FACTOR, TOL
INTEGER I, INFO, J, M, N, NP
* .. Local Arrays ..
LOGICAL BWORK(2*NMAX)
INTEGER IWORK(LIWORK)
DOUBLE PRECISION A(LDA,NMAX), AK(LDAK,NMAX), B(LDB,MMAX),
$ BK(LDBK,PMAX), C(LDC,NMAX), CK(LDCK,NMAX),
$ D(LDD,MMAX), DK(LDDK,PMAX), DWORK(LDWORK),
$ RCOND( 6 )
* .. External Subroutines ..
EXTERNAL SB10ZD
* .. Intrinsic Functions ..
INTRINSIC MAX
* .. Executable Statements ..
*
WRITE ( NOUT, FMT = 99999 )
* Skip the heading in the data file and read the data.
READ ( NIN, FMT = '()' )
READ ( NIN, FMT = * ) N, M, NP
IF ( N.LT.0 .OR. N.GT.NMAX ) THEN
WRITE ( NOUT, FMT = 99990 ) N
ELSE IF ( M.LT.0 .OR. M.GT.MMAX ) THEN
WRITE ( NOUT, FMT = 99989 ) M
ELSE IF ( NP.LT.0 .OR. NP.GT.PMAX ) THEN
WRITE ( NOUT, FMT = 99988 ) NP
ELSE
READ ( NIN, FMT = * ) ( ( A(I,J), J = 1,N ), I = 1,N )
READ ( NIN, FMT = * ) ( ( B(I,J), J = 1,M ), I = 1,N )
READ ( NIN, FMT = * ) ( ( C(I,J), J = 1,N ), I = 1,NP )
READ ( NIN, FMT = * ) ( ( D(I,J), J = 1,M ), I = 1,NP )
READ ( NIN, FMT = * ) FACTOR, TOL
CALL SB10ZD( N, M, NP, A, LDA, B, LDB, C, LDC, D, LDD, FACTOR,
$ AK, LDAK, BK, LDBK, CK, LDCK, DK, LDDK, RCOND,
$ TOL, IWORK, DWORK, LDWORK, BWORK, INFO )
IF ( INFO.EQ.0 ) THEN
WRITE ( NOUT, FMT = 99997 )
DO 10 I = 1, N
WRITE ( NOUT, FMT = 99992 ) ( AK(I,J), J = 1,N )
10 CONTINUE
WRITE ( NOUT, FMT = 99996 )
DO 20 I = 1, N
WRITE ( NOUT, FMT = 99992 ) ( BK(I,J), J = 1,NP )
20 CONTINUE
WRITE ( NOUT, FMT = 99995 )
DO 30 I = 1, M
WRITE ( NOUT, FMT = 99992 ) ( CK(I,J), J = 1,N )
30 CONTINUE
WRITE ( NOUT, FMT = 99994 )
DO 40 I = 1, M
WRITE ( NOUT, FMT = 99992 ) ( DK(I,J), J = 1,NP )
40 CONTINUE
WRITE( NOUT, FMT = 99993 )
WRITE( NOUT, FMT = 99991 ) ( RCOND(I), I = 1,6 )
ELSE
WRITE( NOUT, FMT = 99998 ) INFO
END IF
END IF
STOP
*
99999 FORMAT (' SB10ZD EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (/' INFO on exit from SB10ZD =',I2)
99997 FORMAT (/' The controller state matrix AK is'/)
99996 FORMAT (/' The controller input matrix BK is'/)
99995 FORMAT (/' The controller output matrix CK is'/)
99994 FORMAT (/' The controller matrix DK is'/)
99993 FORMAT (/' The estimated condition numbers are'/)
99992 FORMAT (10(1X,F8.4))
99991 FORMAT ( 5(1X,D12.5))
99990 FORMAT (/' N is out of range.',/' N = ',I5)
99989 FORMAT (/' M is out of range.',/' M = ',I5)
99988 FORMAT (/' NP is out of range.',/' NP = ',I5)
END
Program Data
SB10LD EXAMPLE PROGRAM DATA 6 2 3 0.2 0.0 3.0 0.0 -0.3 -0.1 -3.0 0.2 -0.4 -0.3 0.0 0.0 -0.1 0.1 -1.0 0.0 0.0 -3.0 1.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.3 0.6 2.0 0.1 -0.4 0.2 -4.0 0.0 0.0 0.2 -2.0 -1.0 -2.0 1.0 3.0 -3.0 -4.0 1.0 -2.0 0.0 1.0 1.0 5.0 1.0 -1.0 2.0 -2.0 0.0 -3.0 -3.0 0.0 1.0 -1.0 1.0 -1.0 2.0 4.0 -3.0 0.0 5.0 1.0 10.0 -6.0 -7.0 8.0 2.0 -4.0 1.1 0.0Program Results
SB10ZD EXAMPLE PROGRAM RESULTS The controller state matrix AK is 1.0128 0.5101 -0.1546 1.1300 3.3759 0.4911 -2.1257 -1.4517 -0.4486 0.3493 -1.5506 -1.4296 -1.0930 -0.6026 -0.1344 0.2253 -1.5625 -0.6762 0.3207 0.1698 0.2376 -1.1781 -0.8705 0.2896 0.5017 0.9006 0.0668 2.3613 0.2049 0.3703 1.0787 0.6703 0.2783 -0.7213 0.4918 0.7435 The controller input matrix BK is 0.4132 0.3112 -0.8077 0.2140 0.4253 0.1811 -0.0710 0.0807 0.3558 -0.0121 -0.2019 0.0249 0.1047 0.1399 -0.0457 -0.2542 -0.3472 0.0523 The controller output matrix CK is -0.0372 -0.0456 -0.0040 0.0962 -0.2059 -0.0571 0.1999 0.2994 0.1335 -0.0251 -0.3108 0.2048 The controller matrix DK is 0.0629 -0.0022 0.0363 -0.0228 0.0195 0.0600 The estimated condition numbers are 0.27949D-03 0.66679D-03 0.45677D-01 0.23433D-07 0.68495D-01 0.76854D-01
Click here to get a compressed (gzip) tar file containing the source code of the routine, the example program, data, documentation, and related files.
Return to index